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Abstract
Image segmentation plays an important role in vision understanding. Recently, the emerging vision foundation
models continuously achieved superior performance on various tasks. Following such success, in this paper, we
prove that the Segment Anything Model 2 (SAM2) can be a strong encoder for U-shaped segmentation models. We
propose a simple but effective framework, termed SAM2-UNet, for versatile image segmentation. Specifically,
SAM2-UNet adopts the Hiera backbone of SAM2 as the encoder, while the decoder uses the classic U-shaped design.
Additionally, adapters are inserted into the encoder to enable parameter-efficient fine-tuning. Preliminary
experiments on various downstream tasks, such as camouflaged object detection, salient object detection, marine
animal segmentation, mirror detection, and polyp segmentation, demonstrate that our SAM2-UNet can outperform
existing specialized state-of-the-art methods with minimal additional complexity.

Keywords: Image segmentation, Segment anything model, U-Net, Vision foundation model

1 Introduction
Image and video segmentation [1–4] is a crucial task in
the field of computer vision, serving as the foundation for
various visual understanding applications. By dividing an
image into meaningful regions based on specific semantic
criteria, image segmentation enables a wide array of down-
stream tasks in both natural and medical domains, such
as camouflaged object detection [5, 6], salient object de-
tection [7, 8], marine animal segmentation [9, 10], mirror
detection [11, 12], and polyp segmentation [13, 14]. Many
specialized architectures have been proposed to achieve
superior performance on these different tasks, while it re-
mains an open challenge to design a unified architecture
to address the diverse segmentation tasks.
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The emergence of vision foundation models (VFMs)
[15–18] has introduced significant potential in the field
of image segmentation. Among these VFMs, a notable ex-
ample is the Segment Anything Model (SAM1) [15] and its
successor, Segment Anything Model 2 (SAM2) [16]. SAM2
builds upon the foundation laid by SAM1, utilizing a larger
dataset for training and incorporating improvements in ar-
chitectural design. However, despite these advancements,
SAM2 still produces class-agnostic segmentation results
when no manual prompt is provided. This limitation high-
lights the ongoing challenge of effectively transferring
SAM2 to downstream tasks, where task-specific or class-
specific segmentation is often required. Exploring strate-
gies to enhance SAM2’s adaptability and performance in
these scenarios remains an important area of research.

To adapt SAM to downstream tasks, several approaches
have been proposed, including the use of adapters [19, 20]
for parameter-efficient fine-tuning and the integration of
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Figure 1 Overview of the proposed SAM2-UNet. Note that there are some variants of the Hiera block, and we only demonstrate a simplified
structure for ease of understanding. MLP: multilayer perceptron; RFB: receptive field block

additional conditional inputs such as text prompts [21–23]
or in-context samples [24, 25]. Inspired by the strong seg-
mentation capabilities of U-Net [26] and its variants [27–
29], some researchers have explored the possibility of
transforming SAM into a U-shaped architecture [30, 31].
However, these efforts have often been limited by the plain
structure of the vanilla ViT encoder [32], which lacks the
hierarchy needed for more sophisticated segmentation
tasks. Fortunately, the introduction of SAM2, which fea-
tures a hierarchical backbone, opens new avenues for de-
signing a U-shaped network with improved effectiveness.

In this paper, we propose SAM2-UNet, the benefit of
which is summarized as follows:

1) Simplicity. SAM2-UNet adopts a classic U-shaped
encoder-decoder architecture, known for its ease of use
and high extensibility.

2) Efficiency. Adapters are integrated into the encoder to
enable parameter-efficient fine-tuning, allowing the model
to be trained even on memory-limited devices.

3) Effectiveness. Extensive experiments on eighteen pub-
lic datasets demonstrate that SAM2-UNet delivers power-
ful performance across five challenging benchmarks.

2 Related works
2.1 Foundation segmentation model
In the past two years, the deep learning community has
witnessed the emergence of large-scale pixel-level founda-
tion models, with the Segment Anything Model (SAM) [6,
15, 16] family standing out as one of the most prominent
examples. While these foundation models demonstrate re-
markable zero-shot performance across a wide range of

scenarios, deploying them for specific applications still re-
quires significant effort, such as efficient adaptation [19,
20], model slimming [33], and multi-modal knowledge
injection [34]. This paper focuses on parameter-efficient
fine-tuning [35], which freezes the original model param-
eters and introduces learnable components to efficiently
adapt the foundation models to downstream tasks.

2.2 Single-class image segmentation
Unlike semantic segmentation, which typically considers
identifying multiple classes in the image, single-class im-
age segmentation is dedicated to finding a single fore-
ground class of interest [8, 9, 11, 14, 36, 37] in the im-
age. For example, FEDER [8] leveraged learnable wavelets
to decompose features into distinct frequency bands, of-
fering a new perspective in feature representation for the
camouflaged object detection task. MENet [36] incorpo-
rated biologically inspired mechanisms from the human
visual system, including boundary sensitivity, content in-
tegrity, iterative refinement, and frequency decomposi-
tion, to enhance the detection of salient objects. MAS-
Net [9] leveraged a novel data augmentation paradigm that
systematically manipulates degradation patterns and cam-
ouflage characteristics of marine organisms. HetNet [11]
proposed a hierarchical architecture that initially iden-
tifies potential mirror regions through low-level feature
analysis and subsequently refines predictions by integrat-
ing high-level semantic features. CFA-Net [14] simultane-
ously exploited boundary information and captured hier-
archical semantic details to achieve accurate polyp seg-
mentation. Unlike the aforementioned existing practices,
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Figure 2 Overview of the receptive field block. For simplicity,
normalization and activation operations are omitted in the figure

this paper shifts the focus of network design to the en-
coder, leveraging the powerful representation capabilities
of foundational segmentation models to achieve strong
performance even with a simple U-shaped decoder.

3 Method
The overall architecture of SAM2-UNet is illustrated in
Fig. 1, comprising four main components: encoder, de-
coder, receptive field block (RFB), and adapter. Note that
we discard components that are not essential for con-
structing a basic U-Net [26], such as memory attention,
prompt encoder, memory encoder, and memory bank.

3.1 Encoder
SAM2-UNet applies the Hiera [38] backbone pretrained
by SAM2. Compared with the plain ViT [32] encoder used
in SAM1 [15], Hiera uses a hierarchical structure that al-
lows multiscale feature capturing, which is more suitable
for designing a U-shaped network. Specifically, given an
input image I ∈ ℝ

3×H×W , where H denotes height and
W denotes width, Hiera will output four hierarchical fea-
tures Xi ∈ ℝ

Ci× H
2i+1 × W

2i+1 (i ∈ {1, 2, 3, 4}). For Hiera-L, Ci ∈
{144, 288, 576, 1152}.

3.2 Receptive field block
The structure of RFB is illustrated in Fig. 2, which is com-
posed of multiple branches incorporating kernels and di-
lated convolution layers of varying sizes. After extracting
the encoder features, we pass them through four receptive
field blocks [13, 39] to reduce the channel number to 64 as
well as enhance these lightweight features.

3.3 Adapter
Since the Hiera parameters may be enormous (212 million
for Hiera-L), full fine-tuning may not always be feasible in
terms of memory. Therefore, we freeze the parameters of
Hiera and insert adapters before each multi-scale block of
Hiera to achieve parameter-efficient fine-tuning. Similar
to the adapter design in Refs. [40, 41], each adapter in our
framework consists of a linear layer for downsampling, a
GELU activation function, followed by another linear layer
for upsampling, and a final GELU activation.

Table 1 Detailed information of datasets for different tasks. For
camouflaged object detection, the training set is obtained by
combining CAMO [42] and COD10K [43]. For polyp segmentation,
the training set is obtained by combining Kvasir-SEG [44] and
CVC-ClinicDB [45]

Tasks Dataset Training set Test set

Camouflaged object detection CAMO [42] 1000 250
COD10K [43] 3040 2026
CHAMELEON [46] - 76
NC4K [47] - 4121

Salient object detection DUTS [48] 10553 5019
DUT-OMRON [49] - 5168
HKU-IS [50] - 4447
PASCAL-S [51] - 850
ECSSD [52] - 1000

Marine animal segmentation MAS3K [10] 1769 1141
RMAS [9] 2514 500

Mirror detection MSD [53] 3063 955
PMD [54] 5096 571

Polyp segmentation Kvasir-SEG [44] 900 100
CVC-ClinicDB [45] 550 62
CVC-ColonDB [55] - 380
CVC-300 [56] - 60
ETIS [57] - 196

3.4 Decoder
The original mask decoder in SAM2 uses a two-way trans-
former approach to facilitate feature interaction between
the prompt embedding and encoder features. In contrast,
inspired by the highly customizable U-shaped structure
that has proven effective in many tasks [27–29], our de-
coder also adheres to the classic U-Net design. It consists
of three decoder blocks, each containing two “Conv-BN-
ReLU” combinations, where “Conv” denotes a 3×3 convo-
lution layer and “BN” represents batch normalization. The
output feature from each decoder block passes through a
1 × 1 Conv segmentation head to produce a segmentation
result Si (i ∈ 1, 2, 3), which is then upsampled and super-
vised by the ground truth mask G. Among these output
results, S1 is the final output, while S2 and S3 are used only
during the training phase for auxiliary supervision.

3.5 Loss function
Following the approaches in Refs. [7, 13], we use the
weighted IoU loss and binary cross-entropy (BCE) loss
as our training objectives: ℒ = ℒw

IoU + ℒw
BCE. Addition-

ally, we apply deep supervision to all segmentation out-
puts Si. The total loss for SAM2-UNet is formulated as
ℒtotal =

∑︁3
i=1 ℒ(G, Si).

4 Experiments
4.1 Datasets and benchmarks
Our experiments are conducted on five different bench-
marks with 18 datasets in total, as shown in Table 1. All
these datasets use publicly available train-test splits to en-
sure fair comparison.
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Table 2 Comparison of results on camouflaged object detection. Sα : S-measure; Fβ : adaptive F-measure; Eϕ : mean E-measure; MAE:
mean absolute error

Methods CHAMELEON [46] CAMO [42] COD10K [43] NC4K [47]

Sα Fβ Eϕ MAE Sα Fβ Eϕ MAE Sα Fβ Eϕ MAE Sα Fβ Eϕ MAE

SINet [43] 0.872 0.823 0.936 0.034 0.745 0.712 0.804 0.092 0.776 0.667 0.864 0.043 0.808 0.768 0.871 0.058
PFNet [61] 0.882 0.820 0.931 0.033 0.782 0.751 0.841 0.085 0.800 0.676 0.877 0.040 0.829 0.779 0.887 0.053
ZoomNet [62] 0.902 0.858 0.943 0.024 0.820 0.792 0.877 0.066 0.838 0.740 0.888 0.029 0.853 0.814 0.896 0.043
FEDER [8] 0.903 0.856 0.947 0.026 0.836 0.807 0.897 0.066 0.844 0.748 0.911 0.029 0.862 0.824 0.913 0.042

SAM2-UNet 0.914 0.863 0.961 0.022 0.884 0.861 0.932 0.042 0.880 0.789 0.936 0.021 0.901 0.863 0.941 0.029

Table 3 Comparison of results on salient object detection

Methods DUTS-TE [48] DUT-OMRON [49] HKU-IS [50] PASCAL-S [51] ECSSD [52]

Sα Eϕ MAE Sα Eϕ MAE Sα Eϕ MAE Sα Eϕ MAE Sα Eϕ MAE

U2Net [63] 0.874 0.884 0.044 0.847 0.872 0.054 0.916 0.948 0.031 0.844 0.850 0.074 0.928 0.925 0.033
ICON [64] 0.889 0.914 0.037 0.845 0.879 0.057 0.920 0.959 0.029 0.861 0.893 0.064 0.929 0.954 0.032
EDN [65] 0.892 0.925 0.035 0.850 0.877 0.049 0.924 0.955 0.026 0.865 0.902 0.062 0.927 0.951 0.032
MENet [36] 0.905 0.937 0.028 0.850 0.891 0.045 0.927 0.966 0.023 0.872 0.913 0.054 0.928 0.954 0.031

SAM2-UNet 0.934 0.959 0.020 0.884 0.912 0.039 0.941 0.971 0.019 0.894 0.931 0.043 0.950 0.970 0.020

1) Camouflaged object detection aims to detect objects
well hidden in the environment. We adopt four datasets
for benchmarking, including CAMO [42], COD10K [43],
CHAMELEON [46], and NC4K [47]. Four metrics are used
for comparison, including S-measure (Sα) [58], adaptive F-
measure (Fβ ) [59], mean E-measure (Eϕ) [60], and mean
absolute error (MAE).

2) Salient object detection aims to mimic human cogni-
tion mechanisms to identify salient objects. We adopt five
datasets for benchmarking, including DUTS [48], DUT-
OMRON [49], HKU-IS [50], PASCAL-S [51], and EC-
SSD [52]. Three metrics are used for comparison, includ-
ing Sα [58], Eϕ [60], and MAE.

3) Marine animal segmentation focuses on exploring un-
derwater environments to find marine animals. We adopt
two datasets for benchmarking, including MAS3K [10]
and RMAS [9]. Five metrics are used for comparison, in-
cluding mean IoU (mIoU), Sα [58], weighted F-measure
(Fw

β ) [59], Eϕ [60], and MAE.
4) Mirror detection can identify the mirror regions in the

given input image. We adopt two datasets for benchmark-
ing, including MSD [53] and PMD [54]. Three metrics are
used for comparison, including IoU, F-measure (Fm) [59],
and MAE.

5) Polyp segmentation helps in the diagnosis of col-
orectal cancer. We adopt five datasets for benchmark-
ing, including Kvasir-SEG [44], CVC-ClincDB [45], CVC-
ColonDB [55], CVC-300 [56], and ETIS [57]. Two metrics
are used for comparison, including mean Dice (mDice) and
mIoU.

4.2 Implementation details
Our method is implemented using PyTorch and trained on
a single NVIDIA RTX 4090 GPU with 24 GB of memory.

We use the AdamW optimizer with an initial learning rate
of 0.001, applying cosine decay to stabilize training. Two
data augmentation strategies are employed: random ver-
tical and horizontal flips. Unless otherwise specified, we
use the Hiera-L version of SAM2. All input images are re-
sized to 352 × 352, with a batch size of 12. The bottleneck
channel dimension of the adapter is set to 32. The training
epoch is set to 50 for camouflaged object detection and
salient object detection, and to 20 for marine animal seg-
mentation, mirror detection, and polyp segmentation. For
polyp segmentation, we also adopt a multi-scale training
strategy {1, 1.25} similar to Ref. [13].

4.3 Comparison with state-of-the-art methods
In this subsection, we first analyze the quantitative results
across different benchmarks, followed by visual compar-
isons in camouflaged object detection and polyp segmen-
tation.

4.3.1 Results on camouflaged object detection
The results are shown in Table 2. SAM2-UNet outper-
forms all other methods across all four benchmark
datasets, achieving the highest scores in every metric.
Specifically, in terms of S-measure, SAM2-UNet surpasses
FEDER by 1.1% on the CHAMELEON dataset and by 4.8%
on the CAMO dataset. On the more challenging COD10K
and NC4K datasets, which have larger image counts and
higher segmentation difficulty, SAM2-UNet still exceeds
the performance of FEDER by 3.6% and 3.9% in S-measure,
respectively.

4.3.2 Results on salient object detection
The results are shown in Table 3. SAM2-UNet consis-
tently achieves the top results across all metrics. For S-
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Table 4 Comparison of results on marine animal segmentation. mIoU: mean IoU; Fwβ : weighted F-measure

Methods MAS3K [10] RMAS [9]

mIoU Sα Fwβ Eϕ MAE mIoU Sα Fwβ Eϕ MAE

C2FNet [5] 0.717 0.851 0.761 0.894 0.038 0.721 0.858 0.788 0.923 0.026
OCENet [66] 0.667 0.824 0.703 0.868 0.052 0.680 0.836 0.752 0.900 0.030
ZoomNet [62] 0.736 0.862 0.780 0.898 0.032 0.728 0.855 0.795 0.915 0.022
MASNet [9] 0.742 0.864 0.788 0.906 0.032 0.731 0.862 0.801 0.920 0.024

SAM2-UNet 0.799 0.903 0.848 0.943 0.021 0.738 0.874 0.810 0.944 0.022

Table 5 Comparison of results on mirror detection. Fm :
F-measure

Methods MSD [53] PMD [54]

IoU Fm MAE IoU Fm MAE

MirrorNet [53] 0.790 0.857 0.065 0.585 0.741 0.043
PMD [54] 0.815 0.892 0.047 0.660 0.794 0.032
SANet [12] 0.798 0.877 0.054 0.668 0.795 0.032
HetNet [11] 0.828 0.906 0.043 0.690 0.814 0.029

SAM2-UNet 0.918 0.957 0.022 0.728 0.826 0.027

measure, SAM2-UNet outperforms MENet by 2.9%, 3.4%,
1.4%, 2.2%, and 2.2% on the DUTS-TE, DUT-OMRON,
HKU-IS, PASCAL-S, and ECSSD datasets, respectively.

4.3.3 Results on marine animal segmentation
The results are shown in Table 4. Once again, SAM2-UNet
achieves the best performance across all metrics on the
two benchmark datasets. Specifically, for mIoU, SAM2-
UNet outperforms the second-best MASNet by 5.7% on
the MAS3K dataset and by 0.7% on the RMAS dataset.

4.3.4 Results on mirror detection
The results are shown in Table 5. SAM2-UNet outshines
all other comparison methods in every metric. For in-
stance, SAM2-UNet significantly outperforms HetNet in
terms of IoU on the MSD dataset, with a substantial im-
provement of 9%. Moreover, on the PMD dataset, SAM2-
UNet surpasses HetNet by 3.8% in IoU.

4.3.5 Results on polyp segmentation
The results are shown in Table 6. SAM2-UNet demon-
strates state-of-the-art performance on three out of five
datasets. For example, on the Kvasir dataset, SAM2-UNet
achieves a mDice score of 92.8%, surpassing CFA-Net by
1.3%. Additionally, SAM2-UNet delivers the best perfor-
mance on ColonDB and ETIS, exceeding CFA-Net by 6.5%
and 6.4%, respectively, in mDice. Although our perfor-
mance is weaker on the ClinicDB and CVC-300 datasets,
SAM2-UNet still outperforms CFA-Net by an average of
2.4% in mDice across all five datasets.

4.3.6 Visual comparison
The results are shown in Figs. 3 and 4. In camouflaged
object detection, our method demonstrates superior ac-

Figure 3 Visualization results on camouflaged object detection

Figure 4 Visualization results on polyp segmentation

curacy across various scenes, such as detecting a hidden
face (row 1), chameleon (row 2), caterpillar (row 3), and
seahorse (row 4). For polyp segmentation, our method
effectively reduces false-positive rates (row 1) and false-
negative rates (row 2).

4.4 Discussion
In this section, we discuss some design choices of SAM2-
UNet using MAS3K as an example.

4.4.1 Model scaling
To assess the impact of the Hiera backbone size, we
tested three smaller variants: Tiny, Small, and Base+,
with the results presented in Table 7. In general, larger
backbones tend to yield better performance. Even with
the smaller Hiera-Small backbone, SAM2-UNet still out-
performs MASNet and achieves satisfactory results. As
the backbone size is reduced further, SAM2-UNet pro-
duces results comparable to those of ZoomNet, even
when using parameter-efficient fine-tuning. Moreover,
with fewer parameters, SAM2’s Hiera-Large outperforms
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Table 6 Comparison of results on polyp segmentation. mDice: mean Dice

Methods Kvasir [44] ClinicDB [45] ColonDB [55] CVC-300 [56] ETIS [57] Average

mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU mDice mIoU

PraNet [13] 0.898 0.840 0.899 0.849 0.709 0.640 0.871 0.797 0.628 0.567 0.801 0.739
SANet [67] 0.904 0.847 0.916 0.859 0.752 0.669 0.888 0.815 0.750 0.654 0.842 0.769
CaraNet [68] 0.913 0.859 0.921 0.876 0.775 0.700 0.902 0.836 0.740 0.660 0.850 0.786
CFA-Net [14] 0.915 0.861 0.933 0.883 0.743 0.665 0.893 0.827 0.732 0.655 0.843 0.778

SAM2-UNet 0.928 0.879 0.907 0.856 0.808 0.730 0.894 0.827 0.796 0.723 0.867 0.803

Table 7 Impact of backbone size. “Total Para.” and “Lea Para.”
denote the total number of parameters and the number of
learnable parameters in the backbone, respectively (excluding
the decoder)

Methods Tot Lea MAS3K [10]

Para. Para. mIoU Sα Fwβ Eϕ MAE

Hiera-Tiny 27.1 0.3 0.735 0.868 0.788 0.911 0.032
Hiera-Small 34.3 0.4 0.760 0.882 0.814 0.924 0.028
Hiera-Base+ 69.3 0.6 0.779 0.893 0.833 0.935 0.025
ViT-Large 305.2 1.6 0.737 0.872 0.799 0.935 0.026

Hiera-Large 213.8 1.7 0.799 0.903 0.848 0.943 0.021

Table 8 Impact of PEFT design

Methods MAS3K [10]

mIoU Sα Fwβ Eϕ MAE

Freeze Encoder 0.746 0.876 0.794 0.917 0.029
Mona 0.797 0.902 0.848 0.941 0.022
LMSA 0.642 0.816 0.696 0.862 0.053

Simple Adapter 0.799 0.903 0.848 0.943 0.021

the ImageNet-pretrained ViT-Large. This demonstrates
the high-quality representations offered by the SAM2 pre-
trained Hiera backbone.

4.4.2 PEFT design
We explored other fine-tuning strategies, with the results
shown in Table 8. First, we removed the adapter, leav-
ing only the decoder trainable while completely freezing
the encoder. In this case, the mIoU decreased by 5.3%,
highlighting the importance of PEFT. Additionally, we
tested two alternative adapter designs: Mona [69] and
LMSA [70]. Mona produced results similar to those of
our simple adapter, while LMSA experienced a significant
performance drop. This suggests that the structure of the
adapter plays a crucial role in fine-tuning effectiveness and
should be carefully designed to fully harness the power of
pretrained representations.

4.4.3 Input size
Table 9 presents the impact of input image resolution.
The results demonstrate that input resolution significantly
affects model performance. At 224 × 224, the model

Table 9 Impact of input image size

Resolution MAS3K [10]

mIoU Sα Fwβ Eϕ MAE

224 × 224 0.746 0.878 0.802 0.922 0.029
512 × 512 0.824 0.912 0.869 0.949 0.019

352 × 352 0.799 0.903 0.848 0.943 0.021

achieves lower scores across all metrics, indicating insuf-
ficient spatial detail for accurate segmentation. Increasing
the resolution to 512 × 512 improves performance sub-
stantially, with mIoU rising to 82.4% and MAE dropping
to 0.019, suggesting richer feature representation due to
higher resolution. We adopt 352 × 352 as the input reso-
lution, offering a well-balanced trade-off between accuracy
and efficiency.

5 Limitations and further improvements
Despite achieving state-of-the-art results on multiple pub-
lic benchmarks with its simple architecture, SAM2-UNet
still has some limitations. On one hand, it is currently de-
signed to operate at a resolution of 352 × 352, which lim-
its its effectiveness on high-resolution images with fine
edges. On the other hand, due to the relative lack of se-
mantic knowledge in SAM2’s pretraining process, SAM2-
UNet remains limited in its ability to distinguish multi-
ple categories simultaneously. Since the release of SAM2-
UNet on the preprint platform, it has garnered consider-
able attention within the image segmentation community,
and many derivative models have been proposed. In this
section, we introduce several representative works that ex-
tend the SAM2-UNet model.

5.1 Encoder improvements
Enhancements to the encoder can generally be divided
into two main directions. The first focuses on parameter-
efficient fine-tuning mechanisms. The original adapter
in SAM2-UNet employs a simple MLP-style bottleneck,
while merely increasing adapter complexity does not al-
ways yield better performance. Consequently, several stud-
ies have explored more specialized adapters designed
to capture richer contextual information. For instance,
SAMamba [71] introduced a feature selection adapter
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(FS-Adapter), which facilitates efficient domain adapta-
tion from natural to infrared imagery through a dual-stage
feature selection process. DA2-Net [72] proposed a hier-
archical low-rank adaptation (Hi-LoRA) strategy that in-
serts low-rank matrices into key layers of SAM2, effectively
injecting domain-specific inductive biases from remote
sensing data and mitigating domain shift.

The second direction involves introducing auxiliary en-
coders to address SAM2’s limited high-level semantic rep-
resentation. For example, in our official improved demo
SAM2-UNeXT [73], we incorporated an additional DI-
NOv2 [74] encoder and designed a dual-resolution learn-
ing strategy, forming a more powerful and efficient en-
coder that achieved further improvements across multiple
downstream tasks. For example, on the MAS3K dataset,
the mIoU can be further improved from 79.9% to 85.3%.
Similarly, MEDU [75] integrated a parallel CNN-based en-
coder with feature fusion modules to combine SAM2’s
strong pretrained initialization with CNN’s spatial gener-
alization capacity, thereby enhancing robustness and re-
ducing overfitting.

5.2 Decoder improvements
Decoder enhancements generally follow the design phi-
losophy of compact, efficient segmentation networks, fo-
cusing on refined attention mechanisms to better recon-
struct spatial details from encoded features. For example,
AIS-FCANet [76] proposed a frequency–spatial domain
context-aware fusion module (FSCM) that leverages both
frequency- and spatial-domain attention mechanisms to
strengthen multilevel feature fusion and enable effective
cross-modal interaction. SLENet [77] designed a multi-
scale supervised decoder (MSSD) that enhances spatial
awareness and focus through a top-down, iterative cross-
scale fusion strategy.

6 Conclusion
In this paper, we propose SAM2-UNet, a simple yet ef-
fective U-shaped framework for versatile segmentation
across both natural and medical domains. SAM2-UNet is
designed for ease of understanding and use, featuring a
SAM2 pretrained Hiera encoder coupled with a classic U-
Net decoder. Extensive experiments across 18 datasets on
five benchmarks demonstrate the effectiveness of SAM2-
UNet. Our SAM2-UNet can serve as a new baseline for
developing future SAM2 variants.
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